Request for consultation

Thanks for your request. You’ll soon be chatting with a consultant to get the answers you need.
Your form is submitting...
{{formPostErrorMessage.message}} [{{formPostErrorMessage.code}}]
Email Address is required. 'Email Address' must contain at least 0 characters 'Email Address' cannot exceed 0 characters Please enter a valid Email Address
First Name is required. 'First Name' must contain at least 0 characters 'First Name' cannot exceed 0 characters Please enter a valid First Name
Last Name is required. 'Last Name' must contain at least 0 characters 'Last Name' cannot exceed 0 characters Please enter a valid Last Name
Institution is required.
Discipline is required.
Country is required. 'Country' must contain at least 0 characters 'Country' cannot exceed 0 characters Please enter a valid Country
Cengage, at your service! How can we best meet your needs? is required.
Why are you contacting us today? is required. 'Why are you contacting us today?' must contain at least 0 characters 'Why are you contacting us today?' cannot exceed 0 characters Please enter a valid Why are you contacting us today?
New!

WebAssign for Wackerly/Chen/Loy's Mathematical Statistics with Applications, Single-Term Instant Access, 8th Edition

Dennis Wackerly, John Chen, Adam Loy

  • {{checkPublicationMessage('Available 1 February 2026', '2026-02-01T00:00:00+0000')}}
Starting At £36.00 See pricing and ISBN options
WebAssign for Wackerly/Chen/Loy's Mathematical Statistics with Applications, Single-Term Instant Access 8th Edition by Dennis Wackerly/John Chen/Adam Loy

Overview

WebAssign for Wackerly/Chen/Loy’s “Mathematical Statistics with Applications”, 8th Edition, is a flexible and fully customizable online instructional solution that puts powerful tools in the hands of instructors, enabling you to deploy assignments, instantly assess individual student and class performance and help your students master the course concepts. With its powerful digital platform and Mathematical Statistics with Applications-specific content, you can tailor your course with a wide range of assignment settings, add your own questions and content and access student and course analytics and communication tools.

Dennis Wackerly

John Chen

Professor John T. Chen has been teaching mathematical statistics since 1998 at various universities including, The University of Sydney (1996–1997, Australia), McMaster University (1997–1998 Canada), University of Pittsburg (1998–2000), Bowling Green State University (2000–present), University of Michigan (2010 fall) and University of California, Berkeley (2017 fall). He has published two books, one on multivariate Bonferroni inequalities and another on prediction and statistical learning. Dr Chen’s research comprises of theoretical topics on probability inequalities, distribution theory and simultaneous inference. This aspect is featured by papers published in Biometrika, the Annals of the Institute of Mathematical Statistics, Journal of Applied Probability, among others. Besides theoretical statistics, his research also embraces applications of statistical methodologies to medical investigations and biostatistical consulting. This is reflected by papers published in Biometrics, the Annals of Neurology, The Annals of Thoracic Surgery, Journal of Vascular Surgery, among others. Dr. Chen enjoys cooperating rigorous research thinking and cutting-edge applications of statistical practices into classrooms to inspire students. With his experience and teaching efforts, Dr. Chen has earned teaching-related awards including, Teaching Excellence Awards by the Kappa Mu Epsilon Mathematics Honorary Society (2002 and 2006, BGSU chapter), Appreciations of Faculty Excellence (2019, 2020, 2021, BGSU), Certificate in Effective College Instruction recognized by the Association of College and University Educators and the American Council on Education (2023) and BGSU president’s Innovation award in AI teaching and learning (2024). Part of the materials in this book stem from his teaching notes and lesson plans accumulated over years of his enriched teaching experience.

Adam Loy

Adam Loy is an associate professor of statistics at Carleton College. He teaches all levels of the statistics curriculum, including probability and mathematical statistics. Dr. Loy’s research focuses on incorporating realistic models, computation and visualization into the classroom, exploring the potential of visual inference, developing better visualizations to explore complex models and developing useful and usable R packages. He has publications in a variety of statistics journals including, the Journal of Statistics and Data Science Education, the Journal of Computational and Graphical Statistics and The R Journal, among others. Dr. Loy is currently an associate editor for both the Journal of Statistics and Data Science Education and the R Journal.
  • Diverse Answers: This flexible and powerful answer evaluator accepts diverse interpretations so your students are not penalized for entering a mathematically equivalent or differently formatted answer.
  • Course Packs: Get started with the assignment portion of your course with pre-built assessments designed by subject matter experts. Use these as they are, customize them to your liking or design your own by personally selecting the exercises you wish to assign.
  • By the Book: WebAssign elevates the superior content and pedagogy of the text by offering algorithmically-generated assignments based on end-of-section questions directly from the book.
  • Timely Help: Promote independent learning with a wide range of help tools at the question or assignment level -- such as Watch It videos, Master It tutorials and Read It links to the eBook -- and feedback when students need it to complete assignments and help them learn the concepts.
  • Teach Your Way: Facilitate learning through fully customizable settings, including automatic point adjustments and browser lockdown, empowering you to build the course to your needs and keep students motivated.
  • Grading: WebAssign saves you time spent grading, while providing students with an intuitive experience and instant feedback.
  • Courses & Sections: Creating a course in WebAssign takes only a few minutes. Setup is intuitive, and its flexible platform supports all course designs.
  • Question Creation: Create your own questions in WebAssign with ease. Use our built-in templates or start from scratch with detailed documentation and step-by-step video tutorials.
  • Secure Testing: Concerned about cheating? WebAssign enables you to password-protect assignments, set a time limit for completion, restrict access to certain IP addresses and even prevent students from accessing other applications on their computer while taking the test.
  • Peer Collaboration: WebAssign gives you the flexibility to share assignments and question sets with your faculty colleagues as well as share course management tasks with teaching assistants.
  • Communication: Built-in email and announcement capabilities provide flexible and convenient options for instructor/student communication.
  • LMS Integrations: WebAssign integrates with popular LMS systems for ease of use.
  • Support & Services: WebAssign has a top-notch team of experts who are available to help whenever you need them.
  • Security & Reliability: Teacher and student records and privacy are fiercely protected in accordance with all U.S. laws, while maintaining reliable access to WebAssign and making every effort to ensure optimal system reliability and performance.
  • Accessibility: WebAssign is committed to making its services available to all students based on guidelines from the World Wide Web Consortium (W3C) Web Accessibility Initiative (WAI).
  • Life-of-Edition Access: With WebAssign, if students are using the right code for the book, they will have continued access to the platform after the first semester as long as the course uses the same textbook and edition.
1. WHAT IS STATISTICS?
Population and Data. Characterizing a Set of Measurements: Graphical Methods. Characterizing a Set of Measurements: Numerical Methods. Making Statistical Inference.
2. PROBABILITY.
Interpreting Probabilities. A Review of Set Notation. A Probabilistic Model for an Experiment: The Discrete Case. Calculating the Probability of an Event: The Sample-Point Method. Tools for Counting Sample Points. Conditional Probability and the Independence of Events. Two Laws of Probability. Calculating the Probability of an Event: The Event-Composition Methods. The Law of Total Probability and Bayes' Rule.
3. DISCRETE RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS.
Basic Definition. The Probability Distribution for Discrete Random Variable. The Expected Value of Random Variable or a Function of Random Variable. The Binomial Probability Distribution. The Geometric Probability Distribution. The Negative Binomial Probability Distribution (Optional). The Hypergeometric Probability Distribution. Moments and Moment-Generating Functions. Chebyshev's Inequality for Discrete Random Variables.
4. CONTINUOUS RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS.
The Probability Distribution for Continuous Random Variable. The Expected Value for Continuous Random Variable. The Uniform Probability Distribution. The Normal Probability Distribution. The Gamma Probability Distribution. The Beta Probability Distribution. Some General Comments. Moments and Moment-Generating Functions for Continuous Random Variables. Chebyshev's Inequality for Continuous Random Variables. Expectations of Discontinuous Functions and Mixed Probability Distributions (Optional).
5. MULTIVARIATE PROBABILITY DISTRIBUTIONS.
Bivariate and Multivariate Probability Distributions. Independent Random Variables. The Expected Value of a Function of Random Variables. The Covariance of Two Random Variables. The Expected Value and Variance of Linear Functions of Random Variables. The Multinomial Probability Distribution. The Bivariate Normal Distribution (Optional). Conditional Expectations.
6. FUNCTIONS OF RANDOM VARIABLES.
Introductions. Finding the Probability Distribution of a Function of Random Variables. The Method of Distribution Functions. The Methods of Transformations. Multivariable Transformations Using Jacobians.
7. SAMPLING DISTRIBUTIONS AND THE CENTRAL LIMIT THEOREM.
Introduction. Sampling Distributions Related to the Normal Distribution. The Central Limit Theorem. A Proof of the Central Limit Theorem (Optional). The Normal Approximation to the Binomial Distributions. Order Statistics.
8. ESTIMATION.
The Bias and Mean Square Error of Point Estimators. Some Common Unbiased Point Estimators. Evaluating the Goodness of Point Estimator. Confidence Intervals. Large-Sample Confidence Intervals Selecting the Sample Size. Small-Sample Confidence Intervals for the Population Mean and Difference in Means. Confidence Intervals for the Population Variance.
9. PROPERTIES OF POINT ESTIMATORS AND METHODS OF ESTIMATION.
Relative Efficiency. Consistency. Sufficiency. The Rao-Blackwell Theorem and Minimum-Variance Unbiased Estimation. The Method of Moments. The Method of Maximum Likelihood. Some Large-Sample Properties of MLEs (Optional).
10. HYPOTHESIS TESTING.
Elements of a Statistical Test. Common Large-Sample Tests. Calculating Type II Error Probabilities and Finding the Sample Size for the Z Test. Relationships Between Hypothesis Testing Procedures and Confidence Intervals. Another Way to Report the Results of a Statistical Test: p-values. Some Comments on the Theory of Hypothesis Testing. Small-Sample Hypothesis Testing for the Population Mean and Difference in Means. Testing Hypotheses Concerning Variances. Power of Test and the Neyman-Pearson Lemma. Likelihood Ration Test.
11. LINEAR MODELS AND ESTIMATION BY LEAST SQUARES.
Linear Statistical Models. The Method of Least Squares. Properties of the Least Squares Estimators for the Simple Linear Regression Model. Inference for Regression Coefficients. Inference for Linear Functions of Coefficients: Simple Linear Regression. Predicting a Particular Value of Y Using Simple Linear Regression. Correlation. Some Practical Examples. Fitting the Linear Model by Using Matrices. Properties of the Least Squares Estimators for the Multiple Linear Regression Model. Inference for Linear Functions of Coefficients: Multiple Linear Regression. Prediction a Particular Value of Y Using Multiple Regression. Regression F test.
12. CONSIDERATIONS IN DESIGNING EXPERIMENTS.
The Elements Affecting the Information in a Sample. Designing Experiment to Increase Accuracy. The Matched Pairs Experiment. Some Elementary Experimental Designs.
13. THE ANALYSIS VARIANCE.
The Analysis of Variance Procedure. Comparison of More than Two Means: Analysis of Variance for a One-way Layout. An Analysis of Variance Table for a One-Way Layout. A Statistical Model of the One-Way Layout. Proof of Additivity of the Sums of Squares and E (MST) for a One-Way Layout (Optional). Estimation in the One-Way Layout. A Statistical Model for the Randomized Block Design. The Analysis of Variance for a Randomized Block Design. Estimation in the Randomized Block Design. Selecting the Sample Size. Simultaneous Confidence Intervals for More than One Parameter. Analysis of Variance Using Linear Models.
14. ANALYSIS OF CATEGORICAL DATA.
A Description of the Experiment. The Chi-Square Test. A Test of Hypothesis Concerning Specified Cell Probabilities: A Goodness-of-Fit Test. Contingency Tables. r x c Tables with Fixed Row or Column Totals. Other Applications.
15. NONPARAMETRIC STATISTICS.
A General Two-Sampling Shift Model. A Sign Test for a Matched Pairs Experiment. The Wilcoxon Signed-Rank Test for a Matched Pairs Experiment. The Use of Ranks for Comparing Two Population Distributions: Independent Random Samples. The Mann-Whitney U Test: Independent Random Samples. The Kruskal-Wallis Test for One-Way Layout. The Friedman Test for Randomized Block Designs. The Runs Test: A Test for Randomness. Rank Correlation Coefficient.
16. INTRODUCTION TO BAYESIAN METHODS FOR INFERENCE.
Introduction. Bayesian Priors, Posteriors and Estimators. Bayesian Credible Intervals. Bayesian Tests of Hypotheses.
Appendix 1: Matrices and Other Useful Mathematical Results.
Matrices and Matrix Algebra. Addition of Matrices. Multiplication of a Matrix by a Real Number. Matrix Multiplication. Identity Elements. The Inverse of a Matrix. The Transpose of a Matrix. A Matrix Expression for a System of Simultaneous Linear Equations. Inverting a Matrix. Solving a System of Simultaneous Linear Equations. Other Useful Mathematical Results.
Appendix 2: Common Probability Distributions, Means, Variances, and Moment-Generating Functions.
Discrete Distributions. Continuous Distributions.
Appendix 3: Tables.
Binomial Probabilities . Poisson Probabilities. Normal Curve Areas. Percentage Points of the t Distributions. Percentage Points of the F Distributions. Distribution of Function U. Critical Values of T in the Wilcoxon Matched-Pairs, Signed-Ranks Test. Distribution of the Total Number of Runs R in Sample Size (n1, n2); P(R ≤ a). Critical Values of Pearman’s Rank Correlation Coefficient. Random Numbers.
Answer to Exercises.
Index.
R Appendix: Students are introduced to statistical data analysis and shown how to use R to conduct all the major statistical procedures from the textbook.
WebAssign
Each WebAssign online product offers the full textbook combined with a flexible and fully customizable online instructional assignments and tools.

Cengage provides a seamless user experience for Learning Management Systems (LMS) integration. Please contact your Cengage Learning Consultant for ordering information and visit our Learning Management System Integration web page on WebAssign for general information.

Standalone Digital Access — Ultimate Value

Recommended and most popular

  • ISBN-10: 8214013445
  • ISBN-13: 9798214013442
  • RETAIL £36.00